Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network

Author:

Jiang Ming1,Liu Zhiwei2

Affiliation:

1. School of Internet Economics and Business, Fujian University of Technology, Fuzhou 350014, China

2. School of Transportation, Fujian University of Technology, Fuzhou 350108, China

Abstract

More accurate traffic prediction can further improve the efficiency of intelligent transportation systems. However, the complex spatiotemporal correlation issues in transportation networks pose great challenges. In the past, people have carried out a great deal of research to solve this problem. Most studies are based on graph neural networks to model traffic graphs and attempt to use fixed graph structures to obtain relationships between nodes. However, due to the time-varying spatial correlation of the transportation network, there is no stable node relationship. To address the above issues, we propose a new traffic prediction framework called the Dynamic Graph Spatial-Temporal Neural Network (DGSTN). Unlike other models that use predefined graphs, this model represents stable node relationships and time-varying node relationships by constructing static topology maps and dynamic information maps during the training and testing stages, to capture hidden node relationships and time-varying spatial correlations. In terms of network architecture, we designed multi-scale causal convolution and adaptive spatial self-attention mechanisms to capture temporal and spatial features, respectively, and assisted learning through static and dynamic graphs. The proposed framework has been tested on two real-world traffic datasets and can achieve state-of-the-art performance.

Funder

Research Project of the Science and Technology Innovation Think Tank of the Fujian Society of Science and Technology

National Social Science Foundation of China

Fujian Social Sciences Federation Planning Project

Project of the Science and Technology Innovation Think Tank of the Fujian Society of Science

Fujian University of Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3