An Advancement in Truck-Tire–Road Interaction Using the Finite Element Analysis

Author:

Fathi Haniyeh1,Khosravi Mehran1,El-Sayegh Zeinab1ORCID,El-Gindy Moustafa1

Affiliation:

1. Faculty of Engineering and Applied Science, Department of Automotive and Mechatronics, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada

Abstract

This paper aimed to investigate the cornering characteristics of a Regional Haul Steer II, RHS 315/80 R22.5 truck tire traveling on a dry, hard surface using the Finite element analysis (FEA). This research was carried out using commercial Finite Element software and Pam-Crash in an Explicit Environment. A finite element truck tire model was developed to apply the tire terrain cornering condition. The concentrated loads and boundary conditions for the rim and wheel were applied to the model. The rubber material was defined using the Mooney–Rivlin model. The truck tire cornering operating conditions, including three different speeds with respect to various positive slip angles, were investigated. Several simulations were repeated at various operating conditions, including three different inflation pressures and three different vertical loads. Subsequently, the tire lateral force was computed using the local and global frame coordinates. Additionally, the self-aligning moment was extracted from the tire cross-section at each operating condition. Finally, a comparison between the simulation results showed that the tire lateral force was highly sensitive to the variation of the slip angles at the higher domain, and also that the tire inflation pressure, regardless of the speed, was considered to be one of the main parameters directly affecting the tire-cornering properties.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on simplified tire finite element modeling and simulation method;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3