Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process

Author:

Ahmed Afaq1ORCID,Javed Syed Bilal2ORCID,Uppal Ali Arshad1ORCID,Iqbal Jamshed3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan

2. Centers of Excellence in Science & Applied Technologies, Islamabad 44000, Pakistan

3. School of Computer Science, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK

Abstract

The Cavity Simulation Model (CAVSIM) is a 3D, parameterisable simulator of the Underground Coal Gasification Process (UCG) that serves as a benchmark for UCG prediction. Despite yielding accurate outputs, CAVSIM has some limitations, which chiefly include inadequate graphical capabilities to visualise cavity geometry and gas production, time-ineffectiveness in terms of parametrisation, i.e., it involves editing, compiling multiple files and checking for errors, and lack of tools to synthesise a controller. Therefore, to compensate for these shortcomings, the services of third-party software, such as MATLAB, must be procured. CAVSIM was integrated with MATLAB to utilise its functionalities and toolboxes such as System Identification, Neural Network, and Optimization Toolbox etc. The integration was accomplished by designing C-mex files, and furthermore, the simulation results in both environments exhibit the same behaviour, demonstrating successful integration. Consequently, CAVSIM has also acquired a controllable structure, wherein parametrisation is now a single-click process; this is demonstrated by a case study outlining the implementation of Model Predictive Control (MPC) on a UCG plant. Moreover, the performance metrics, i.e., Mean Average Error (MAE) and Root Mean Square Error (RMSE) of 0.13, 0.23 for syngas heating value, and 0.012, 0.02 for flowrate quantitatively establishes the efficacy of CAVLAB in designing MPC for the UCG system. The novelty of this work lies in making the software package open-source with the aim of streamlining the research of multiple aspects of the UCG process.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3