Three-Dimensional Turbulent Simulation of Bivariate Normal Distribution Protection Device

Author:

Liu Jing1,Li Zongyu1,Huang Hanming2,Lin Weiwei2,Sun Zhilin1,Chen Fanjun3

Affiliation:

1. Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China

2. Zhejiang Ocean Blue Marine Planning and Design Co., Ltd., Hangzhou 310058, China

3. College of Architecture and Civil Engineering, Zhejiang University, Hangzhou 310058, China

Abstract

In response to the deficiencies in existing bridge pier scour protection technologies, this paper introduces a novel protective device, namely a normal distribution-shaped surface (BND) protection devices formed by rotating a concave normal curve. A three-dimensional turbulent SST k−ω model is constructed, and physical model experiments of conical surfaces are conducted to validate the mathematical model. The simulation analyzes longitudinal water flow, downflow, vorticity intensity, and shear stress within normal and conical surfaces. The results show that the downflow distribution in front of the pier spans a relative water depth of (−0.45, 0.67), with a peak velocity approximately 70% of the longitudinal flow velocity. Circulation forms within the surfaces, with the main vortex flux inside the BND being 33% lower than that inside the conical surface. The maximum shear stress coefficient inside the BND can reach 9, and the protective surface isolates the bed from the flow to prevent scouring by high shear stress. The velocity gradient at the edge of the surface is small, and the edge shear stress of the 3D normal distribution-shaped surface (BND) protection device is only one-third of that of the conical surface, preventing edge scouring. The large shear stress and its distribution area decrease monotonically with the increase in surface width. When the surface width is four times the diameter, the distribution range of the shear stress coefficient greater than 1 is very small. The study of three-Dimensional turbulence within the BND provides a numerical basis for an anti-scour design.

Funder

Major Project of Science and Technology in Zhejiang Province

Key Program from the Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3