Abstract
Global climate change is likely to influence evapotranspiration (ET); as a result, many ET calculation methods may not give accurate results under different climatic conditions. The main objective of this study is to verify the suitability of machine learning (ML) models as calculation methods for pan evaporation modeling on the macro-regional scale. The most significant PE changes in the different agroclimatic zones of the Slovak Republic were compared, and their considerable impacts were analyzed. On the basis of the agroclimatic zones, 35 meteorological stations distributed across Slovakia were classified into six macro-regions. For each of the meteorological stations, 11 variables were applied during the vegetation period in the years from 2010 to 2020 with a daily time step. The performance of eight different ML models—the neural network (NN) model, the autoneural network (AN) model, the decision tree (DT) model, the Dmine regression (DR) model, the DM neural network (DM NN) model, the gradient boosting (GB) model, the least angle regression (LARS) model, and the ensemble model (EM)—was employed to predict PE. It was found that the different models had diverse prediction accuracies in various geographical locations. In this study, the results of the values predicted by the individual models are compared.
Funder
Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献