Evaluation the Performance of Three Types of Two-Source Evapotranspiration Models in Urban Woodland Areas

Author:

Chen Han1,Zhou Ziqi1,Li Han1,Wei Yizhao1,Huang Jinhui (Jeanne)1ORCID,Liang Hong234,Wang Weimin234

Affiliation:

1. College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, China

2. Guangdong, Change and Comprehensive Treatment of Regional Ecology and Environment in Greater Bay Area, National Observation and Research Station, Shenzhen 518049, China

3. State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518049, China

4. Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China

Abstract

The determination of the evapotranspiration (ET) and its components in urban woodlands is crucial to mitigate the urban heat island effect and improve sustainable urban development. However, accurately estimating ET in urban areas is more difficult and challenging due to the heterogeneity of the underlying surface and the impact of human activities. In this study, we compared the performance of three types of classic two-source ET models on urban woodlands in Shenzhen, China. The three ET models include a pure physical and process-based ET model (Shuttleworth–Wallace model), a semi-empirical and physical process-based ET model (FAO dual-Kc model), and a purely statistical and process-based ET model (deep neural network). The performance of the three models was validated using an eddy correlation and stable hydrogen and oxygen isotope observations. The verification results suggested that the Shuttleworth–Wallace model achieved the best performance in the ET simulation at main urban area site (coefficient of determination (R2) of 0.75). The FAO-56 dual Kc model performed best in the ET simulation at the suburb area site (R2 of 0.77). The deep neural network could better capture the nonlinear relationship between ET and various environmental variables and achieved the best simulation performance in both of the main urban and suburb sites (R2 of 0.73 for the main urban and suburb sites, respectively). A correlation analysis showed that the simulation of urban ET is most sensitive to temperature and least sensitive to wind speed. This study further analyzed the causes for the varying performance of the three classic ET models from the model mechanism. The results of the study are of great significance for urban temperature cooling and sustainable urban development.

Funder

the National Key Research and Development Program

Shenzhen Ecological and Environmental Monitoring Center Station Program

Guangdong Province Shenzhen Science and Technology Innovation Project

National Natural Science Foundation of China

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3