The Effect of Ultrasonic Agitation on the Seedless Growth of Cu on Ru-W Thin Films

Author:

Santos Rúben F.ORCID,Oliveira Bruno M. C.ORCID,Ferreira Paulo J.,Vieira Manuel F.ORCID

Abstract

Ru attracted considerable attention as a candidate to replace TaN as a diffusion barrier layer for Cu interconnect metallisation. The addition of W improves the diffusion barrier properties of Ru but appears to weaken the adhesion strength between the barrier and Cu and the direct (seedless) electroplatability behaviour. Although Cu can be directly electroplated on near equimolar Ru-W thin films, no complete substrate coverage is obtained. The understanding of Cu electrocrystallisation on Ru–W is essential to develop methods of fabricating thin, continuous, and well adherent films for advanced interconnect metallisation, where Ru–W thin films could be used as diffusion barriers. This work studies the effect of ultrasonic agitation on the growth of Cu films electroplated on Ru–W, namely on the impact on substrate coverage. Film structure, morphology and chemical composition were evaluated by digital and scanning and transmission electron microscopies, and X-ray diffraction. The results show that Cu particles decrease with increasing current density, but when no electrolyte agitation is applied, substrate coverage is incomplete in the central region, with openings around larger Cu particles, regardless of current density. Under ultrasonic agitation, substrate coverage is remarkably improved. An active particle detachment mechanism is proposed as responsible for attaining improved substrate coverage, only possible at intermediate current density. Lower current densities promote growth over nucleation, whereas higher currents result in extensive hydrogen reduction/formation. Ultrasonic agitation also enhances a preferential Cu growth along <111> direction.

Funder

European Regional Development Fund

FCT

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3