Packed Bed Thermal Energy Storage System: Parametric Study

Author:

Rabi’ Ayah Marwan1,Radulovic Jovana1ORCID,Buick James M.1ORCID

Affiliation:

1. School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

Abstract

The use of thermal energy storage (TES) contributes to the ongoing process of integrating various types of energy resources in order to achieve cleaner, more flexible, and more sustainable energy use. Numerical modelling of hot storage packed bed storage systems has been conducted in this paper in order to investigate the optimum design of the hot storage system. In this paper, the effect of varying design parameters, including the diameter of the packed bed, the storage material, the void fraction, and the aspect ratio of the packed bed, on storage performance was investigated. COMSOL Multiphysics 5.6 software has been used to design, simulate, and validate an axisymmetric model, which was then applied to evaluate the performance of the storage system based on the total energy stored, the heat transfer efficiency, and the capacity factor. In this paper, a novel-packed bed was proposed based on the parametric analysis. This involved a 0.2 void fraction, 4 mm porous media particle diameter, and Magnesia as the optimum storage material with air as the heat transfer fluid.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3