Pumped Thermal Energy Storage Technology (PTES): Review

Author:

Rabi Ayah Marwan1,Radulovic Jovana1ORCID,Buick James M.1ORCID

Affiliation:

1. School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

Abstract

In recent years, there has been an increase in the use of renewable energy resources, which has led to the need for large-scale Energy Storage units in the electric grid. Currently, Compressed Air Energy Storage (CAES) and Pumped Hydro Storage (PHES) are the main commercially available large-scale energy storage technologies. However, these technologies are restricted geographically and can require fossil fuel streams to heat the air. Thus, there is a need to develop novel large-scale energy storage technologies that do not suffer from the abovementioned drawbacks. Among the in-development, large-scale Energy Storage Technologies, Pumped Thermal Electricity Storage (PTES), or Pumped Heat Energy Storage, stands out as the most promising due to its long cycle life, lack of geographical limitations, the absence of fossil fuel streams, and the possibility of integrating it with conventional fossil-fuel power plants. There have been a number of PTES systems proposed using different thermodynamic cycles, including the Brayton cycle, the Rankine cycle, and the transcritical Rankine cycle. The purpose of this paper is to provide a comprehensive overview of PTES concepts, as well as the common thermodynamic cycles they implement, indicating their individual strengths and weaknesses. Furthermore, the paper provides a comprehensive reference for planning and integrating various types of PTES into energy systems.

Publisher

MDPI AG

Subject

Building and Construction

Reference92 articles.

1. International Energy Agency (2023, May 11). Global Energy Review 2021—Analysis—IEA. Available online: https://www.iea.org/reports/global-energy-review-2021/renewables.

2. Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies;Rabi;Thermo,2023

3. Energy storage technologies and real life applications—A state of the art review;Aneke;Appl. Energy,2016

4. A review on liquid air energy storage: History, state of the art and recent developments;Borri;Renew. Sustain. Energy Rev.,2021

5. Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores;Ge;Renew. Energy,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3