Robot Time-Optimal Trajectory Planning Based on Quintic Polynomial Interpolation and Improved Harris Hawks Algorithm

Author:

Xu Jing12,Ren Chaofan2,Chang Xiaonan2

Affiliation:

1. Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, No.2 Mengxi Road, Zhenjiang 212003, China

2. School of Mechanical Engineering, Jiangsu University of Science and Technology, No.666 Changhui Road, Zhenjiang 212114, China

Abstract

Time-optimal trajectory planning is one of the most important ways to improve work efficiency and reduce cost and plays an important role in practical application scenarios of robots. Therefore, it is necessary to optimize the running time of the trajectory. In this paper, a robot time-optimal trajectory planning method based on quintic polynomial interpolation and an improved Harris hawks algorithm is proposed. Interpolation with a quintic polynomial has a smooth angular velocity and no acceleration jumps. It has widespread application in the realm of robot trajectory planning. However, the interpolation time is usually obtained by testing experience, and there is no unified criterion to determine it, so it is difficult to obtain the optimal trajectory running time. Because the Harris hawks algorithm adopts a multi-population search strategy, compared with other swarm intelligent optimization algorithms such as the particle swarm optimization algorithm and the fruit fly optimization algorithm, it can avoid problems such as single population diversity, low mutation probability, and easily falling into the local optimum. Therefore, the Harris hawks algorithm is introduced to overcome this problem. However, because some key parameters in HHO are simply set to constant or linear attenuation, efficient optimization cannot be achieved. Therefore, the nonlinear energy decrement strategy is introduced in the basic Harris hawks algorithm to improve the convergence speed and accuracy. The results show that the optimal time of the proposed algorithm is reduced by 1.1062 s, 0.5705 s, and 0.3133 s, respectively, and improved by 33.39%, 19.66%, and 12.24% compared with those based on particle swarm optimization, fruit fly algorithm, and Harris hawks algorithms, respectively. In multiple groups of repeated experiments, compared with particle swarm optimization, the fruit fly algorithm, and the Harris hawks algorithm, the computational efficiency was reduced by 4.7019 s, 1.2016 s, and 0.2875 s, respectively, and increased by 52.40%, 21.96%, and 6.30%. Under the optimal time, the maximum angular displacement, angular velocity, and angular acceleration of each joint trajectory meet the constraint conditions, and their average values are only 75.51%, 38.41%, and 28.73% of the maximum constraint. Finally, the robot end-effector trajectory passes through the pose points steadily and continuously under the cartesian space optimal time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Marine Equipment and Technology Institute of Jiangsu University of Science and Technology

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3