Affiliation:
1. Department of Mathematics, Applied Math and Statistics, Case Western Reserve University, Cleveland, OH 44106-7058, USA
Abstract
We apply the theory of quadratic differentials, to present a classification of orthogonal pairs of foliations of the hyperbolic plane by hyperbolic conics. Light rays are represented by trajectories of meromorphic differentials, and mirrors are represented by trajectories of the quadratic differential that represents the geometric mean of two such differentials. Using the notion of a hyperbolic conic as a mirror, we classify the types of orthogonal pairs of foliations of the hyperbolic plane by confocal conics. Up to diffeomorphism, there are nine types: three of these types admit one parameter up to isometry; the remaining six types are unique up to isometry. The families include all possible hyperbolic conics.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献