Affiliation:
1. Department of Mathematics, Applied Math and Statistics, Case Western Reserve University, Cleveland, OH 44106-7058, USA
Abstract
Orthogonal families of bicircular quartics are naturally viewed as pairs of singular foliations of C^ by vertical and horizontal trajectories of a non-vanishing quadratic differential. Yet the identification of these trajectories with real quartics in CP2 is subtle. Here, we give an efficient, geometric argument in the course of updating the classical theory of confocal families in the modern language of quadratic differentials and the Edwards normal form for elliptic curves. In particular, we define a parameterized Edwards transformation, providing explicit birational equivalence between each curve in a confocal family and a fixed curve in normal form.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Reference60 articles.
1. Stillwell, J. (1989). Undergraduate Texts in Mathematics, Springer.
2. Ueber einen Satz von Steiner und einige Punkte der Theorie der Curven dritter Ordnung;Clebsch;J. Reine Angew. Math.,1864
3. Ueber eine Gattung von Curven vierten Grades, welche mit den elliptischen Functionen zusammenhängen;Siebeck;J. Reine Angew. Math.,1860
4. Langer, J.C., and Singer, D.A. (2023). Confocal families of hyperbolic conics via quadratic differentials. Axioms, 12.
5. On Non-Euclidean Properties of Conics;Story;Am. J. Math.,1882