On the Convergence Properties of a Stochastic Trust-Region Method with Inexact Restoration

Author:

Bellavia  Stefania,Morini  BenedettaORCID,Rebegoldi SimoneORCID

Abstract

We study the convergence properties of SIRTR, a stochastic inexact restoration trust-region method suited for the minimization of a finite sum of continuously differentiable functions. This method combines the trust-region methodology with random function and gradient estimates formed by subsampling. Unlike other existing schemes, it forces the decrease of a merit function by combining the function approximation with an infeasibility term, the latter of which measures the distance of the current sample size from its maximum value. In a previous work, the expected iteration complexity to satisfy an approximate first-order optimality condition was given. Here, we elaborate on the convergence analysis of SIRTR and prove its convergence in probability under suitable accuracy requirements on random function and gradient estimates. Furthermore, we report the numerical results obtained on some nonconvex classification test problems, discussing the impact of the probabilistic requirements on the selection of the sample sizes.

Funder

INdAM GNCS project “Ottimizzazione adattiva per il machine learning”

Mobility Project “Second order methods for optimization problems in Machine Learning”

IEA CNRS project entitled “VaMOS”

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference31 articles.

1. Bishop, C.M. (2006). Pattern Recognition and Machine Learning, Springer.

2. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press.

3. Optimization Methods for Large-Scale Machine Learning;Bottou;SIAM Rev.,2018

4. Kingma, D.P., and Ba, J. (2015, January 7–9). Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA.

5. Minimizing Finite Sums with the Stochastic Average Gradient;Schmidt;Math. Program.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3