Author:
Schmidt Mark,Le Roux Nicolas,Bach Francis
Funder
European Research Council
Google Research Award
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Reference65 articles.
1. Agarwal, A., Bartlett, P.L., Ravikumar, P., Wainwright, M.J.: Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans. Inf. Theory 58(5), 3235–3249 (2012)
2. Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. Adv. Neural Inf. Process. Syst. 773–781 (2013)
3. Bach, F., Moulines, E.: Non-strongly-convex smooth stochastic approximation with convergence rate $$o(1/n)$$ o ( 1 / n ) . arXiv preprint (2013)
4. Bertsekas, D.P.: A new class of incremental gradient methods for least squares problems. SIAM J. Optim. 7(4), 913–926 (1997)
5. Blatt, D., Hero, A.O., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18(1), 29–51 (2007)
Cited by
365 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献