Abstract
The research on the control strategy and dynamic characteristics of the Molten Carbonate Fuel Cell-Micro Gas Turbine (MCFC-MGT) hybrid power system has received much attention. The use of the Hardware-In-the-Loop Simulation (HILS) method to study the MCFC-MGT hybrid power system, where the MCFC is the model subsystem and the MGT is the physical subsystem, is an effective means to save development cost and time. The difficulty with developing the MCFC-MGT HILS system is the transfer of the mass, energy, and momentum between the physical subsystem and the model subsystem. Hence, a new Simulation–Stimulation (Sim–Stim) interface model of the MCFC-MGT HILS hybrid power system to achieve a consistent mass, energy, and momentum with the prototype system of the MCFC-MGT hybrid power system is proposed. In order to validate the Sim–Stim interface model before application in an actual system, both a real-time model of the MCFC-MGT hybrid power system and the MCFC-MGT HILS hybrid power system based on the Sim–Stim interface model were developed in the Advanced PROcess Simulation (APROS) platform. The step-up and step-down of the current density, which were strict for the Sim–Stim interface model, were studied in these two models. The results demonstrated that the Sim–Stim interface model developed for the MCFC-MGT HILS hybrid power system is rapid and reasonable.
Funder
National Natural Science Foundation of China
Graduate Research and Innovation Foundation of Chongqing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献