A Novel Micromechanics-Model-Based Probabilistic Analysis Method for the Elastic Properties of Unidirectional CFRP Composites

Author:

Shan Meijuan,Zhao Libin,Ye Jinrui

Abstract

Considerable uncertainties in the mechanical properties of composites not only prevent them from having efficient applications but also threaten the safety and reliability of structures. In order to determine the uncertainty in the elastic properties of unidirectional CFRP composites, this paper develops a probabilistic analysis method based on a micromechanics theoretical model and the Monte Carlo simulation. Firstly, four commonly used theoretical models are investigated by calculating the deterministic elastic parameters of three unidirectional CFRP composites, which are compared with experimental outcomes. According to error analyses, the bridging model is the most brilliant one, with errors lower than 6%, which suggests that it can be used in probabilistic analyses. Furthermore, constituent parameters are regarded as normally distributed random variables, and the Monte Carlo simulation was used to obtain samplings based on the statistics of constituent parameters. The predicted probabilistic elastic parameters of the T800/X850 composite coincide with those from experiments, which verified the effectiveness of the developed probabilistic analysis method. According to the probabilistic analysis results, the statistics of the elastic parameters, the correlations between the elastic parameters, and their sensitivity to the constituent’s properties are determined. The moduli E11, E22, and G12 of the T800/X850 composite follow the lognormal distribution, namely, ln(E11)~N[5.15, 0.0282], ln(E22)~N[2.15, 0.0242], and ln(G12)~N[1.48, 0.0382], whereas its Poisson’s ratio, v12, obeys the normal distribution, namely, v12~N(0.33, 0.0122). Additionally, the correlation coefficients between v12 and E11/E22/G12 are small and thus can be ignored, whereas the correlation coefficients between any two of E11, E22, and G12 are larger than 0.5 and should be considered in the reliability analyses of composite structures. The developed probabilistic analysis method based on the bridging model and the Monte Carlo simulation is fast and reliable and can be used to efficiently evaluate the probabilistic properties of the elastic parameters of any unidirectional composite in the reliability design of structures in engineering practice.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3