Toward Suppressing Oil Backflow Based on a Combined Driving Waveform for Electrowetting Displays

Author:

Long Zhengxing,Yi Zichuan,Zhang Hu,Lv Jinpu,Liu Liming,Chi Feng,Shui Lingling,Zhang Chongfu

Abstract

Electrowetting display (EWD) is a new type of paper-like reflective display based on colored oil, which has gradually become one of the most potential electronic papers with low power consumption, fast response, and full color. However, oil backflow can occur in EWDs, which makes it difficult to maintain a stable aperture ratio. In order to improve the stability of the aperture ratio of EWDs, a new driving waveform was proposed based on analyzing the phenomenon of oil backflow. The driving waveform was composed of a shrinking stage and a driving stage. Firstly, a threshold voltage of oil splitting was calculated by analyzing the luminance curve of EWDs, which were driven by different direct current (DC) voltages. Then, an exponential function waveform, which increased from the threshold voltage, was applied to suppress oil splitting. Finally, a periodic signal combined with a reset signal with a DC signal was applied during the driving stage to maintain a stable aperture ratio display. Experimental results showed that the charge trapping effect could be effectively prevented by the proposed driving waveform. Compared with an exponential function waveform, the average luminance value was increased by 28.29%, and the grayscale stability was increased by 13.76%. Compared to a linear function waveform, the aperture ratio was increased by 10.44% and the response time was reduced by 20.27%.

Funder

the National Natural Science Foundation of China

the Engineering Technology Research Center of Colleges and Universities in Guang-dong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3