A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement

Author:

Tang Xinyao,Wang Xupeng,Ji Xiaomin,Zhou Yawen,Yang Jie,Wei Yuchen,Zhang Wenjie

Abstract

Human body enhancement is an interesting branch of robotics. It focuses on wearable robots in order to improve the performance of human body, reduce energy consumption and delay fatigue, as well as increase body speed. Robot-assisted equipment, such as wearable exoskeletons, are wearable robot systems that integrate human intelligence and robot power. After careful design and adaptation, the human body has energy-saving sports, but it is an arduous task for the exoskeleton to achieve considerable reduction in metabolic rate. Therefore, it is necessary to understand the biomechanics of human sports, the body, and its weaknesses. In this study, a lower limb exoskeleton was classified according to the power source, and the working principle, design idea, wearing mode, material and performance of different types of lower limb exoskeletons were compared and analyzed. The study shows that the unpowered exoskeleton robot has inherent advantages in endurance, mass, volume, and cost, which is a new development direction of robot exoskeletons. This paper not only summarizes the existing research but also points out its shortcomings through the comparative analysis of different lower limb wearable exoskeletons. Furthermore, improvement measures suitable for practical application have been provided.

Funder

Ministry of education Youth Fund Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on design and trajectory tracking control of a variable size lower limb exoskeleton rehabilitation robot;Journal of Mechanical Science and Technology;2024-01

2. A Comparative Analysis of Optimal and Biomechanical Torque Control Strategies for Powered Knee Exoskeletons in Squat Lifting;Journal of Mechanisms and Robotics;2023-12-22

3. A Preliminary Study on the Functional Coupling between Nerve and Blood Microcirculation for Applications in Rehabilitation Robots;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

4. A Self-powered and Wearable Pneumatic Artificial Muscle Device using Recycled Walking Energy;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

5. Lower Limb Exoskeletons and Virtual Reality for Rehabilitation: A Technological Review;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3