Hydrogeochemistry and Related Processes Controlling the Formation of the Chemical Composition of Thermal Water in Podhale Trough, Poland

Author:

Sekuła KlaudiaORCID,Rusiniak PiotrORCID,Wątor KatarzynaORCID,Kmiecik EwaORCID

Abstract

The most promising Polish region in terms of its geothermal resource potential is the Podhale Trough in the Inner West Carpathians, where the thermal water occurs in the Eocene-Mesozoic strata. The origin and conditions of formation of the chemical composition of the thermal water are different in a regional scale due to the impact of infiltrating water on the chemical compounds present in nearby thermal intakes, chemical processes responsible for the concentration of major elements and residence time. The article presents the regional conceptual model in regard to the factors controlling the chemistry of thermal water from Podhale Trough and the conditions of its exchange. It was allowed by performing the hydrogeochemical characteristics of studied water and analyzing its changes according to flow direction from HCO3-Ca-Mg type to SO4-Cl-Na-Ca and SO4-Ca-Mg types. The hydrogeochemical modelling was also made allowing identification of the impact of reservoir rocks on the formation of the chemical composition. For confirmation of the theories formulated and for more accurate interpretation of the results obtained from hydrogeochemical modelling, hydrochemical indices were calculated, i.e., rHCO3−/rCl−, rNa+/rCl−, rCa2+/rMg2+, rCa2+/(rCa2+ + rSO42−) and rNa+/(rNa+ + rCl−). The results revealed the most important processes evolving the chemistry of thermal water are progressive freshening of the thermal water reservoir, which in the past was filled with salty water, dissolution of gypsum, and ongoing dolomitization. Conducted research presents the important factors that in the case of increased exploitation of thermal water in the Podhale Trough, may influence the quality of thermal water in terms of its physical and chemical parameters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3