The Contributions of Tectonics, Hydrochemistry and Stable Isotopes to the Water Resource Management of a Thermal–Mineral Aquifer: The Case Study of Kyllini, Northwest Peloponnese

Author:

Stavropoulou Vasiliki1,Pyrgaki Anastasia2,Zagana Eleni1,Pouliaris Christos3ORCID,Kazakis Nerantzis1ORCID

Affiliation:

1. Laboratory of Hydrogeology, Department of Geology, Faculty of Natural Sciences, University of Patras, Rio, 26504 Patra, Greece

2. Decentralized Administration of Peloponnese, Western Greece and the Ionian, Athinon Str. 105, 26500 Patra, Greece

3. School of Mining and Metallurgical Engineering, Zografou Campus, National Technical University of Athens, Iroon Polytechniou 9, 15773 Athens, Greece

Abstract

This study aims to investigate the intricate relationship between geological structures, water chemistry, and isotopic composition in order to gain a deeper understanding of the origins and recharge mechanisms of thermal–mineral waters in the Kyllini region. The research integrates tectonic analysis, hydrochemical data, and stable isotope measurements to delineate recharge zones and trace the origin of these unique water sources. The methods used for delineation are the geological and tectonic study of the area, as well as hydrochemical and isotopic data analysis. The findings highlight that tectonic activity creates preferential flow paths and consequently influences the hydrogeological framework, facilitating deep circulation and the upwelling of thermal waters. Monthly analyses of groundwater samples from the Kyllini thermal spring were conducted over one hydrological year (2019–2020) and compared with data from the area collected in 2009. The hydrochemical profiles of major and minor ions reveal distinct signatures corresponding to various water–rock interactions, while stable isotope analysis provides insights into the climatic conditions and altitudes of recharge areas. Hydrochemical analyses reveal the composition of thermal–mineral waters, aiding in the identification of potential sources and their evolution. The conceptualization of Kyllini contributes to the deeper understanding of the intricate interplay between tectonics, hydrochemistry, and stable isotopes. During a hydrological year, the water type of Kyllini’s spring groundwater remains the same (Na-Cl-HCO3), presenting only slight alterations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3