Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology

Author:

Caputa Jakub1ORCID,Wielgosz Maciej12ORCID,Łukasik Daria1,Russek Paweł12ORCID,Grzeszczyk Jakub1,Karwatowski Michał12ORCID,Mazurek Szymon1ORCID,Frączek Rafał12ORCID,Śmiech Anna3ORCID,Jamro Ernest12ORCID,Koryciak Sebastian12ORCID,Dąbrowska-Boruch Agnieszka12ORCID,Pietroń Marcin12ORCID,Wiatr Kazimierz12ORCID

Affiliation:

1. ACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, Poland

2. AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland

3. University of Life Sciences, al. Akademicka 13, 20-950 Lublin, Poland

Abstract

The primary objective of this research was to enhance the quality of semantic segmentation in cytology images by incorporating super-resolution (SR) architectures. An additional contribution was the development of a novel dataset aimed at improving imaging quality in the presence of inaccurate focus. Our experimental results demonstrate that the integration of SR techniques into the segmentation pipeline can lead to a significant improvement of up to 25% in the mean average precision (mAP) metric. These findings suggest that leveraging SR architectures holds great promise for advancing the state-of-the-art in cytology image analysis.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3