Tree Detection and Species Classification in a Mixed Species Forest Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery

Author:

Sivanandam Poornima,Lucieer ArkoORCID

Abstract

Information on tree species and changes in forest composition is necessary to understand species-specific responses to change, and to develop conservation strategies. Remote sensing methods have been increasingly used for tree detection and species classification. In mixed species forests, conventional tree detection methods developed with assumptions about uniform tree canopy structure often fail. The main aim of this study is to identify effective methods for tree delineation and species classification in an Australian native forest. Tree canopies were delineated at three different spatial scales of analysis: (i) superpixels representing small elements in the tree canopy, (ii) tree canopy objects generated using a conventional segmentation technique, multiresolution segmentation (MRS), and (iii) individual tree bounding boxes detected using deep learning based on the DeepForest open-source algorithm. Combinations of spectral, texture, and structural measures were tested to assess features relevant for species classification using RandomForest. The highest overall classification accuracies were achieved at the superpixel scale (0.84 with all classes and 0.93 with Eucalyptus classes grouped). The highest accuracies at the individual tree bounding box and object scales were similar (0.77 with Eucalyptus classes grouped), highlighting the potential of tree detection using DeepForest, which uses only RGB, compared to site-specific tuning with MRS using additional layers. This study demonstrates the broad applicability of DeepForest and superpixel approaches for tree delineation and species classification. These methods have the potential to offer transferable solutions that can be applied in other forests.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3