A Random Forest Model for Drought: Monitoring and Validation for Grassland Drought Based on Multi-Source Remote Sensing Data

Author:

Wang Qian,Zhao Lin,Wang Mali,Wu Jinjia,Zhou Wei,Zhang Qipeng,Deng Meie

Abstract

The accuracy of drought monitoring models is crucial for drought monitoring and early warning. Random forest (RF) is being used widely in the field of artificial intelligence. Nonetheless, the application of a random forest model in grassland drought monitoring research is yet to be further explored. In this study, various drought hazard factors were integrated based on remote sensing data, including from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Global Precipitation Measurement (GPM), as multisource remote sensing data. Based on the RF, a comprehensive grassland drought monitoring model was constructed and tested in Inner Mongolia, China, as an example. The critical issue addressed is the construction of a grassland drought disaster monitoring model based on meteorological data and multisource remote sensing data by using an RF model, and the verification of the accuracy and reliability of its monitoring results. The results show that the grassland drought monitoring model could quantitatively monitor the drought situation in Inner Mongolia grasslands. There was a significantly positive correlation between the drought indicators output by the model and the standardized precipitation evapotranspiration index (SPEI) measured in the field. The correlation coefficients (R) between the drought degree were 0.9706 and 0.6387 for the training set and test set, respectively. The consistent rate between the model drought index and the SPEI reached 87.90%. Drought events in Inner Mongolia were monitored from April to September in wet years, normal years, and dry years using the constructed model. The monitoring results of the model constructed in this study were in accordance with the actual drought conditions, reflecting the development and spatial evolution of drought conditions. This study provides a new application method for the comprehensive assessment of grassland drought.

Funder

The Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3