Improving Estimates and Change Detection of Forest Above-Ground Biomass Using Statistical Methods

Author:

Turton Amber E.,Augustin Nicole H.,Mitchard Edward T. A.ORCID

Abstract

Forests store approximately as much carbon as is in the atmosphere, with potential to take in or release carbon rapidly based on growth, climate change and human disturbance. Above-ground biomass (AGB) is the largest carbon pool in most forest systems, and the quickest to change following disturbance. Quantifying AGB on a global scale and being able to reliably map how it is changing, is therefore required for tackling climate change by targeting and monitoring policies. AGB can be mapped using remote sensing and machine learning methods, but such maps have high uncertainties, and simply subtracting one from another does not give a reliable indication of changes. To improve the quantification of AGB changes it is necessary to add advanced statistical methodology to existing machine learning and remote sensing methods. This review discusses the areas in which techniques used in statistical research could positively impact AGB quantification. Nine global or continental AGB maps, and a further eight local AGB maps, were investigated in detail to understand the limitations of techniques currently used. It was found that both modelling and validation of maps lacked spatial consideration. Spatial cross validation or other sampling methods, which specifically account for the spatial nature of this data, are important to introduce into AGB map validation. Modelling techniques which capture the spatial nature should also be used. For example, spatial random effects can be included in various forms of hierarchical statistical models. These can be estimated using frequentist or Bayesian inference. Strategies including hierarchical modelling, Bayesian inference, and simulation methods can also be applied to improve uncertainty estimation. Additionally, if these uncertainties are visualised using pixelation or contour maps this could improve interpretation. Improved uncertainty, which is commonly between 30% and 40%, is in addition needed to produce accurate change maps which will benefit policy decisions, policy implementation, and our understanding of the carbon cycle.

Funder

European Research Council

Natural Environment Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference103 articles.

1. The State of the World’s Forests 2020. Forests, Biodiversity and People, 2020.

2. UN SDG 15 Definitions. 2022.

3. Global carbon budget 2021;Friedlingstein;Earth Syst. Sci. Data,2022

4. High-resolution global maps of 21st-century forest cover change;Hansen;Science,2013

5. Global Forest Watch. 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3