Comparative Analysis of Binhu and Cosmic-2 Radio Occultation Data

Author:

Zhang HongjieORCID,Huangfu JingliangORCID,Wang Xingbao,Chen Wen,Peng Wenwu,Tang Qi,Chu Yiqi,Xue Ziyue

Abstract

Global Navigation Satellite System (GNSS) radio occultation (RO) technology has been widely used in Earth atmospheric detection and has a significant impact on numerical weather prediction (NWP), climate detection, and other fields. Cosmic-2 LEO-1 (C2E1) is a well-known RO data provider; however, its observations are confined to 45°S and 45°N. Recently, the Binhu meteorological observation test satellite (BH) has provided global coverage of RO data, including refractivity, specific humidity, and temperature data. In this study, RO data from BH and C2E1 are analyzed and compared from 8 February 2022 to 17 February 2022. Employing the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5) data as a reference, both BH and C2E1 RO data agree with the ERA data, with the refractivity, temperature, and specific humidity profiles reflecting the real conditions of the natural atmosphere. In addition, BH data are comparable to C2E1 data at low and middle latitudes (0–45°), and BH data at middle and high latitudes (45–90°) are of better quality than those at low and middle latitudes (0–45°). For example, without considering the errors introduced by the interpolation of the ERA-5 data for comparative analysis, the BH refractivity profiles show a mean absolute bias of 0.73 N at low and middle latitudes and only 0.23 N at middle and high latitudes, and that for BH specific humidity profiles at middle and high latitudes is 0.015 g/kg, which is only half of that at low and middle latitudes. The BH temperature and specific humidity data show promising data accuracy. Therefore, BH RO data may provide important supplementary data at higher latitudes and may improve future NWPs through assimilation.

Funder

National Natural Science Foundation of China

the State Key Laboratory of Tropical Oceanography

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3