Micromachined Vibrating Ring Gyroscope Architecture with High-Linearity, Low Quadrature Error and Improved Mode Ordering

Author:

Li ZezhangORCID,Gao ShiqiaoORCID,Jin Lei,Liu Haipeng,Niu Shaohua

Abstract

A new micromachined vibrating ring gyroscope (VRG) architecture with low quadrature error and high-linearity is proposed, which successfully optimizes the working modes to first order resonance mode of the structure. The improved mode ordering can significantly reduce the vibration sensitivity of the device by adopting the hinge-frame mechanism. The frequency difference ratio is introduced to represent the optimization effect of modal characteristic. Furthermore, the influence of the structural parameters of hinge-frame mechanism on frequency difference ratio is clarified through analysis of related factors, which contributes to a more effective design of hinge-frame structure. The designed VRG architecture accomplishes the goal of high-linearity by using combination hinge and variable-area capacitance strategy, in contrast to the conventional approach via variable-separation drive/sense strategy. Finally, finite element method (FEM) simulations are carried out to investigate the stiffness, modal analysis, linearity, and decoupling characteristics of the design. The simulation results are sufficiently in agreement with theoretical calculations. Meanwhile, the hinge-frame mechanism can be widely applied in other existing ring gyroscopes, and the new design provides a path towards ultra-high performance for VRG.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3