Abstract
The range kernel of bilateral filter degrades image quality unintentionally in real environments because the pixel intensity varies randomly due to the noise that is generated in image sensors. Furthermore, the range kernel increases the complexity due to the comparisons with neighboring pixels and the multiplications with the corresponding weights. In this paper, we propose a noise-aware range kernel, which estimates noise using an intensity difference-based image noise model and dynamically adjusts weights according to the estimated noise, in order to alleviate the quality degradation of bilateral filters by noise. In addition, to significantly reduce the complexity, an approximation scheme is introduced, which converts the proposed noise-aware range kernel into a binary kernel while using the statistical hypothesis test method. Finally, blue a fully parallelized and pipelined very-large-scale integration (VLSI) architecture of a noise-aware bilateral filter (NABF) that is based on the proposed binary range kernel is presented, which was successfully implemented in field-programmable gate array (FPGA). The experimental results show that the proposed NABF is more robust to noise than the conventional bilateral filter under various noise conditions. Furthermore, the proposed VLSI design of the NABF achieves 10.5 and 95.7 times higher throughput and uses 63.6–97.5% less internal memory than state-of-the-art bilateral filter designs.
Funder
Ministry of Science and ICT, South Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献