Dynamic Residual Dense Network for Image Denoising

Author:

Song YudaORCID,Zhu Yunfang,Du Xin

Abstract

Deep convolutional neural networks have achieved great performance on various image restoration tasks. Specifically, the residual dense network (RDN) has achieved great results on image noise reduction by cascading multiple residual dense blocks (RDBs) to make full use of the hierarchical feature. However, the RDN only performs well in denoising on a single noise level, and the computational cost of the RDN increases significantly with the increase in the number of RDBs, and this only slightly improves the effect of denoising. To overcome this, we propose the dynamic residual dense network (DRDN), a dynamic network that can selectively skip some RDBs based on the noise amount of the input image. Moreover, the DRDN allows modifying the denoising strength to manually get the best outputs, which can make the network more effective for real-world denoising. Our proposed DRDN can perform better than the RDN and reduces the computational cost by 40 – 50 % . Furthermore, we surpass the state-of-the-art CBDNet by 1.34 dB on the real-world noise benchmark.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3