Mist and Edge Computing Cyber-Physical Human-Centered Systems for Industry 5.0: A Cost-Effective IoT Thermal Imaging Safety System

Author:

Fraga-Lamas PaulaORCID,Barros DanielORCID,Lopes Sérgio IvanORCID,Fernández-Caramés Tiago M.ORCID

Abstract

While many companies worldwide are still striving to adjust to Industry 4.0 principles, the transition to Industry 5.0 is already underway. Under such a paradigm, Cyber-Physical Human-centered Systems (CPHSs) have emerged to leverage operator capabilities in order to meet the goals of complex manufacturing systems towards human-centricity, resilience and sustainability. This article first describes the essential concepts for the development of Industry 5.0 CPHSs and then analyzes the latest CPHSs, identifying their main design requirements and key implementation components. Moreover, the major challenges for the development of such CPHSs are outlined. Next, to illustrate the previously described concepts, a real-world Industry 5.0 CPHS is presented. Such a CPHS enables increased operator safety and operation tracking in manufacturing processes that rely on collaborative robots and heavy machinery. Specifically, the proposed use case consists of a workshop where a smarter use of resources is required, and human proximity detection determines when machinery should be working or not in order to avoid incidents or accidents involving such machinery. The proposed CPHS makes use of a hybrid edge computing architecture with smart mist computing nodes that processes thermal images and reacts to prevent industrial safety issues. The performed experiments show that, in the selected real-world scenario, the developed CPHS algorithms are able to detect human presence with low-power devices (with a Raspberry Pi 3B) in a fast and accurate way (in less than 10 ms with a 97.04% accuracy), thus being an effective solution (e.g., a good trade-off between cost, accuracy, resilience and computational efficiency) that can be integrated into many Industry 5.0 applications. Finally, this article provides specific guidelines that will help future developers and managers to overcome the challenges that will arise when deploying the next generation of CPHSs for smart and sustainable manufacturing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference92 articles.

1. Announcement of the Industrie 4.0 Project in the 2011 Hannover Fair. 2022.

2. Council for Science, Technology and Innovation, Government of Japan, Report on The 5th Science and Technology Basic Plan. 18 December 2015. 2021.

3. Industry 5.0—A Human-Centric Solution;Nahavandi;Sustainability,2019

4. Paschek, D., Mocan, A., and Draghici, A. Industry 5.0—The expected impact of next industrial revolution. Proceedings of the MakeLearn & TIIM Conference.

5. Industry 5.0: A survey on enabling technologies and potential applications;Maddikunta;J. Ind. Inf. Integr.,2022

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3