Using Single- and Multi-Date UAV and Satellite Imagery to Accurately Monitor Invasive Knotweed Species

Author:

Martin François-Marie,Müllerová JanaORCID,Borgniet Laurent,Dommanget Fanny,Breton Vincent,Evette André

Abstract

Understanding the spatial dynamics of invasive alien plants is a growing concern for many scientists and land managers hoping to effectively tackle invasions or mitigate their impacts. Consequently, there is an urgent need for the development of efficient tools for large scale mapping of invasive plant populations and the monitoring of colonization fronts. Remote sensing using very high resolution satellite and Unmanned Aerial Vehicle (UAV) imagery is increasingly considered for such purposes. Here, we assessed the potential of several single- and multi-date indices derived from satellite and UAV imagery (i.e., UAV-generated Canopy Height Models—CHMs; and Bi-Temporal Band Ratios—BTBRs) for the detection and mapping of the highly problematic Asian knotweeds (Fallopia japonica; Fallopia × bohemica) in two different landscapes (i.e., open vs. highly heterogeneous areas). The idea was to develop a simple classification procedure using the Random Forest classifier in eCognition, usable in various contexts and requiring little training to be used by non-experts. We also rationalized errors of omission by applying simple “buffer” boundaries around knotweed predictions to know if heterogeneity across multi-date images could lead to unfairly harsh accuracy assessment and, therefore, ill-advised decisions. Although our “crisp” satellite results were rather average, our UAV classifications achieved high detection accuracies. Multi-date spectral indices and CHMs consistently improved classification results of both datasets. To the best of our knowledge, it was the first time that UAV-generated CHMs were used to map invasive plants and their use substantially facilitated knotweed detection in heterogeneous vegetation contexts. Additionally, the “buffer” boundary results showed detection rates often exceeding 90–95% for both satellite and UAV images, suggesting that classical accuracy assessments were overly conservative. Considering these results, it seems that knotweed can be satisfactorily mapped and monitored via remote sensing with moderate time and money investment but that the choice of the most appropriate method will depend on the landscape context and the spatial scale of the invaded area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3