The Effects of Sound Speed Profile to the Convergence Zone in Deep Water

Author:

Wu ShuanglinORCID,Li Zhenglin,Qin Jixing,Wang Mengyuan,Li Wen

Abstract

The structure of a sound speed profile (SSP) in deep water causes refraction of sound rays and Convergence Zones (CZs) of high intensity where the rays focus at shallow depth. Study of sound field characteristics in the CZs has always been the focus of deep-water acoustics research. Many studies have been conducted on sound propagation in different parts of the oceans with different environments and, in this paper, the range and width of CZ is analyzed in the East Indian Ocean (EIO) and the South China Sea (SCS). Through the experimental data collected in different seasons with the propagation conditions change in the EIO and the SCS, we observe that the SSPs in different marine environments have a significant impact on the CZs of deep water. The sound channel mixing layer and isothermal layer have great effect on the CZ ranges. The water depths in the two experimental areas are similar, the range of the first CZ in the EIO is 7–8 km farther than that in the SCS, and the width of the CZs in the EIO is about 2–3 km narrower than that in the SCS. The surface mixed layer and the thermocline affect the CZ width but has little effect on the CZ range when the sound speed at the source and the bottom are practically the same. As the propagation conditions change along the seasons in the EIO, the range of the first CZ is almost the same, but the width of the CZs in the summer is about 2 km narrower than that in the spring. The water depth affects the CZ width but has little effect on the CZ range if the CZs can be formed. The different CZ characteristics between EIO and SCS are explained by both theoretical calculation and numerical simulation. The influence of the SSP structure and water depth on the CZ range are analyzed and the corresponding mechanism is explained. The research results are of great significance for underwater acoustic detection in deep sea.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3