Analysis of VLF Wave Field Components and Characteristics Based on Finite Element Time-Domain Method

Author:

Wang Qile1ORCID,Zhu Hanhao12ORCID,Chai Zhigang3,Cui Zhiqiang3,Wang Yafen4

Affiliation:

1. Institute of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China

2. Donghai Laboratory, Zhoushan, Zhejiang 316021, China

3. School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China

4. Unit 91977 of the People’s Liberation Army, Beijing 150001, China

Abstract

Most traditional sound field calculation methods regard the seabed as the horizontal stratified liquid sea bottom and conduct simulation analysis based on the frequency domain. Hence, the generality of the above research methods is limited to varying degrees. To accurately clarify the propagation characteristics and mechanism of very low-frequency (VLF, ≤100 Hz) sound waves in the shallow sea, a numerical calculation model is established using the finite element time-domain method (FETD) based on the three-dimensional cylindrical coordinate system. Using this model, the effects of sea-bottom topographies and geoacoustic parameters on the composition and characteristics of VLF sound fields in the shallow sea and their corresponding mechanism are investigated through the comparative analysis of various numerical simulation examples. The simulation results demonstrate that the low-frequency sound field in the full waveguide of the shallow sea is composed of normal mode waves in the seawater layer, Scholte waves at the liquid-solid interface, and elastic waves at the sea bottom. Compared with the soft sea bottom, which has a more negligible elastic impedance, the hard sea bottom is more conducive to the long-distance propagation of normal mode waves and the excitation of Scholte waves. The Scholte waves on the hard sea bottom are significantly stronger than those on the soft sea bottom. Compared with the horizontal sea bottom, the uphill topography enhances the sound energy leakage to the sea bottom. It is more favorable to receive Scholte waves at shallow depths, whereas the influence laws of downhill topography are the opposite.

Funder

Ministry of Natural Resources of the People's Republic of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3