Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay

Author:

Wang Yiheng,Chen Jianfang,Zhou FengORCID,Zhang Wei,Hao Qiang

Abstract

The Hangzhou Bay (HZB) is an important part of the Zhoushan fishing ground, the most productive region in the Eastern China Seas. Although HZB remains eutrophication all year round, its chlorophyll a (Chl) and primary productivity (PP) are usually significantly lower than those in the adjacent waters. In the present study, we presented the Chl and PP distributions in the HZB and analyzed their correlations with environmental factors in four seasons. The field observation showed that Chl and PP had significant seasonal variations, and was highest in the summer (1.66 ± 0.61 mg·m−3 and 12.11 ± 12.25 mg C·m−3·h−1, respectively). Total suspended matters (TSM) concentration was the key environmental factor that constrains PP in the study area. High concentration of TSM reduced light exposure (LE, the annual mean value was 0.92 ± 0.81 Einstein·m−2·day−1) in the mixed layer of the HZB, which was much lower than the saturated light intensity of phytoplankton growth, and thus caused a strong light limitation in the HZB. However, the seasonal variations in the photosynthesis rates (PB) and Chl did not coincide. This fact suggested that the growth rate was not the only factor controlling seasonal variations of phytoplankton biomass. In winter, the very high TSM and strong mixing might reduce the zooplankton grazing rate, and lead to a relatively high concentration of Chl during the very low LE and PB period. These results implied that, in the HZB, the extremely turbid water could affect both phytoplankton growth and loss, which was probably the major mechanism responsible for the complex phytoplankton spatial and temporal variations.

Funder

National Natural Science Foundation of China

Special support Program for High-level Talents of Zhejiang Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference54 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3