Abstract
The rapid change and expansion of human settlements raise the need for precise remote-sensing monitoring tools. While some Land Cover (LC) maps are publicly available, the knowledge of the up-to-date urban extent for a specific instance in time is often missing. The lack of a relevant urban mask, especially in developing countries, increases the burden on Earth Observation (EO) data users or requires them to rely on time-consuming manual classification. This paper explores fast and effective exploitation of Sentinel-1 (S1) and Sentinel-2 (S2) data for the generation of urban LC, which can be frequently updated. The method is based on an Object-Based Image Analysis (OBIA), where one Multi-Spectral (MS) image is used to define clusters of similar pixels through super-pixel segmentation. A short stack (<2 months) of Synthetic Aperture Radar (SAR) data is then employed to classify the clusters, exploiting the unique characteristics of the radio backscatter from human-made targets. The repeated illumination and acquisition geometry allows defining robust features based on amplitude, coherence, and polarimetry. Data from ascending and descending orbits are combined to overcome distortions and decrease sensitivity to the orientation of structures. Finally, an unsupervised Machine Learning (ML) model is used to separate the signature of urban targets in a mixed environment. The method was validated in two sites in Portugal, with diverse types of LC and complex topography. Comparative analysis was performed with two state-of-the-art high-resolution solutions, which require long sensing periods, indicating significant agreement between the methods (averaged accuracy of around 90%).
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献