A non‐grain production on cropland spatiotemporal change detection method based on Landsat time‐series data

Author:

He Tingting1,Jiang Suqin1,Xiao Wu1ORCID,Zhang Maoxin1ORCID,Tang Tie2,Zhang Heyu3

Affiliation:

1. School of Public Affairs Zhejiang University Hangzhou People's Republic of China

2. Department of Land Surveying Hunan Provincial Institute of Land and Resources Planning Changsha People's Republic of China

3. Guangzhou South China Institute of Natural Resources Science and Technology Guangzhou People's Republic of China

Abstract

AbstractGlobal food security is being threatened by the reduction of high‐quality cropland, extreme weather events, and the uncertainty of food supply chains. The globalization of agricultural trade has elevated the diversification of non‐grain production (NGP) on cultivated land to a prominent strategy for poverty alleviation in numerous developing nations. Its rapid expansion has engendered a multitude of deleterious consequences on both food security and ecological stability. NGP in China is becoming very common in the process of rapid urbanization, threatening national food security. To better understand the causal mechanisms and enable governments to balance food security and rural development, it is crucial to have a clear understanding of the spatiotemporal dynamics of NGP using remote sensing. Yet knowledge gaps remain concerning how to use remote sensing to track human‐dominated or ‐induced long‐term cultivated land changes. Our study proposed a method for detecting the spatiotemporal evolution of NGP based on Landsat time‐series data under the Google Earth Engine platform. This approach was proposed by (1) obtaining the union of cultivated lands from multiple landcover products to minimize the cultivated land omission, (2) constructing multi‐index dynamic trend rules for 3 representative types of NGP and obtaining results at the pixel level, while adopting the continuous change detection and classification algorithm to Landsat time series (1986–2022) to determine when the most recent change occurred, (3) minimizing the noise by object‐oriented land use–land cover classification and mode filter approaches, and (4) mapping the spatiotemporal distribution of NGP. The proposed methodology was tested in Jiashan, located in Zhejiang Province (eastern China), where NGP is widespread. We achieved a high overall accuracy of 95.67% for NGP type detection and an overall accuracy of 85.26% for change detection of time. The results indicated a continued increasing pattern of NGP in Jiashan from 1986 to 2022, with the cumulative percentage of NGP increasing from 0.02% to 20.69%. This study highlights the utilization of time‐series data to document essential NGP information for evaluating food security in China and the method is well‐suited for large‐scale mapping due to its automatic manner.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3