Abstract
Mapping surface currents with high spatiotemporal resolution over a wide coverage is crucial for understanding ocean dynamics and associated biogeochemical processes. The most widely used algorithm for estimating surface velocities from sequential satellite observations is the maximum cross-correlation (MCC) method. However, many unrealistic vectors still exist, despite the utilization of various filtering techniques. In this study, an objective method has been developed through the combination of MCC and multivariate optimum interpolation (MOI) analysis under a continuity constraint. The MCC method, with and without MOI, is applied to sequences of simulated sea surface temperature (SST) fields with a 1/48° spatial resolution over the East China Sea continental shelf. Integration of MOI into MCC reduces the average absolute differences between the model’s ‘actual’ velocity and the SST-derived velocity by 19% in relative magnitude and 22% in direction, respectively. Application of the proposed method to Geostationary Ocean Color Imager (GOCI) satellite observations produces good agreement between derived surface velocities and the Oregon State University (OSU) regional tidal model outputs. Our results demonstrate that the incorporation of MOI into MCC can provide a significant improvement in the reliability and accuracy of satellite-derived velocity fields.
Funder
the Innovation Group Project of Southern Marine Science and Engineering Guangdong Labora-tory
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献