A Novel Multi-Candidate Multi-Correlation Coefficient Algorithm for GOCI-Derived Sea-Surface Current Vector with OSU Tidal Model

Author:

Cui He,Chen Jianyu,Cao Zhenyi,Huang Haiqing,Gong Fang

Abstract

The maximum cross-coefficient (MCC) algorithm based on the template matching technique is a typical algorithm for obtaining the sea-surface currents (SSCs) in marginal seas. However, this algorithm has mismatches between images in highly turbid water. In this study, we implemented the MCC algorithm to Geostationary Ocean Color Imager-derived total suspended matter to obtain the SSCs in the Yellow Sea and the East China Sea. We propose a novel vector optimization algorithm, which is combined with the accurate estimate of tidal ellipses from the OSU tidal model. This method considers the three greatest candidate acquisitions from multi-correlation coefficients as potential vectors. The rotation direction of the vector within the tidal oscillation is used to identify and substitute for the spurious vector. The obtained average speed of SSC reached 0.60 m/s, which was close to the buoy-measured average speed of 0.58 m/s. Compared with the existing spurious vector eliminating method, the average angular error was improved by 20%, and the average relative amplitude error was improved by 4% in our case study. On the basis of ensuring data integrity, the inversion accuracy was improved.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3