Improvement of Multi-GNSS Precision and Success Rate Using Realistic Stochastic Model of Observations

Author:

Mirmohammadian Farinaz,Asgari Jamal,Verhagen Sandra,Amiri-Simkooei Alireza

Abstract

With the advancement of multi-constellation and multi-frequency global navigation satellite systems (GNSSs), more observations are available for high precision positioning applications. Although there is a lot of progress in the GNSS world, achieving realistic precision of the solution (neither too optimistic nor too pessimistic) is still an open problem. Weighting among different GNSS systems requires a realistic stochastic model for all observations to achieve the best linear unbiased estimation (BLUE) of unknown parameters in multi-GNSS data processing mode. In addition, the correct integer ambiguity resolution (IAR) becomes crucial in shortening the Time-To-Fix (TTF) in RTK, especially in challenging environmental conditions. In general, it is required to estimate various variances for observation types, consider the correlation between different observables, and compensate for the satellite elevation dependence of the observable precision. Quality control of GNSS signals, such as GPS, GLONASS, Galileo, and BeiDou can be performed by processing a zero or short baseline double difference pseudorange and carrier phase observations using the least-squares variance component estimation (LS-VCE). The efficacy of this method is investigated using real multi-GNSS data sets collected by the Trimble NETR9, SEPT POLARX5, and LEICA GR30 receivers. The results show that the standard deviation of observations depends on the system and the observable type in which a particular receiver could have the best performance. We also note that the estimated variances and correlations among different observations are also dependent on the receiver type. It is because the approaches utilized for the recovery techniques differ from one type of receiver to another kind. The reliability of IAR will improve if a realistic stochastic model is applied in single or multi-GNSS data processing. According to the results, for the data sets considered, a realistic stochastic model can increase the computed empirical success rate to 100% in multi-GNSS as well as a single system. As mentioned previously, the realistic precision of the solution can be achieved with a realistic stochastic model. However, using the estimated stochastic model, in fact, leads to better precision and accuracy for the estimated baseline components, up to 39% in multi-GNSS.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3