GNSS/IMU Sensor Fusion Performance Comparison of a Car Localization in Urban Environment Using Extended Kalman Filter

Author:

Erfianti R,Asfihani T,Suhandri H F

Abstract

Abstract Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) are popular navigation sensor for position fixing technique and dead reckoning system that complement each other. GNSS can provide accurate position and velocity information when it establishes a Line of Sight (LOS) with a minimum of four satellites. However, this accuracy can decrease due to signal outage, jamming, interference, and multipath effects. On the other hand, the IMU has the advantage of measuring the platform’s orientation with a high-frequency update and is not affected by environmental conditions. However, a drift effect causes the measurement errors to accumulate. Several studies have demonstrated the fusion of both sensors in terms of the Extended Kalman Filter (EKF). This study conduct sensor fusion for car localization in an urban environment based on the loosely coupled integration scheme. In order to improve the sensor fusion performance, pre-processing GNSS and IMU data were applied. The result shows that pre-processing DGNSS and IMU filtering can increase the accuracy of the integrated navigation solution up to 80.02% in the east, 80.13% in the north, and 89.45% in the up direction during the free outage period.

Publisher

IOP Publishing

Subject

General Engineering

Reference25 articles.

1. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University;Hu;GNSS Solutions,2020

2. Ionosphere-constrained single-frequency PPP with an Android smartphone and assessment of GNSS observations;Wang;Sensors,2020

3. Precise and robust RTK-GNSS positioning in urban environments with dual-antenna configuration;Fan;Sensors,2019

4. Enhanced wide-area multi-GNSS RTK and rapid static positioning in the presence of ionospheric disturbances;Paziewski;Earth, Planets and Space,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3