A Tumbling Magnetic Microrobot System for Biomedical Applications

Author:

Niedert Elizabeth E.,Bi Chenghao,Adam GeorgesORCID,Lambert Elly,Solorio LuisORCID,Goergen Craig J.ORCID,Cappelleri David J.ORCID

Abstract

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.

Funder

National Science Foundation

National Cancer Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yield Stress Fluid as Ball Joints for Magnetic Miniature Robots;2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2024-07-01

2. Design, Fabrication, and Characterization of a Helical Multi-Material MicroRobot with a Detachable Payload (HMMR-DP);2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2024-07-01

3. Development of a precision tumor bone metastasis model by a magnetic micro-living-motor system;Colloids and Surfaces B: Biointerfaces;2024-06

4. Ex vivo validation of magnetically actuated intravascular untethered robots in a clinical setting;Communications Engineering;2024-05-16

5. Remote Control of Untethered Magnetic Robots within a Lumen using X-Ray-Guided Robotic Platform;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3