External Disturbances Rejection for Vector Field Sensors in Attitude and Heading Reference Systems

Author:

Wang YongjunORCID,Li ZhiORCID,Li XiangORCID

Abstract

The attitude and heading reference system (AHRS), which consists of tri-axial magnetometer, accelerometer, and gyroscope, has been widely adopted for three-dimensional attitude determination in recent years. It provides an economical means of passive navigation that only relies on gravity and geomagnetic fields. However, despite the advantages of small size, low cost, and low power, the magnetometer and accelerometer are susceptible to external disturbances, such as the magnetic interference from nearby ferromagnetic objects and current-carrying conductors, as well as the motional acceleration of the carrier. To eliminate such disturbances, a vector-based parallel structure is introduced for the attitude filter design, which can avoid the mutual interference between gravity and geomagnetic vectors. Meanwhile, an approach to estimate and compensate the external disturbances in real time for magnetometer and accelerometer is also presented. Compared with existing designs, the proposed filter architecture and external disturbance rejection algorithm can feasibly and effectively cooperate with mainstream data fusion techniques, including complementary filter and Kalman filter. According to experiment results, in the case that large and persistent external disturbances exist, the proposed method can improve the accuracy and robustness of attitude estimation, and it outperforms the existing methods such as switching filter and adaptive filter. Furthermore, through the experiments, the critical role of fading factor in handling the external disturbance is revealed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3