Block Compressive Sensing (BCS) Based Low Complexity, Energy Efficient Visual Sensor Platform with Joint Multi-Phase Decoder (JMD)

Author:

Ebrahim MansoorORCID,Chia Wai Chong,Adil Syed HasanORCID,Raza Kamran

Abstract

Devices in a visual sensor network (VSN) are mostly powered by batteries, and in such a network, energy consumption and bandwidth utilization are the most critical issues that need to be taken into consideration. The most suitable solution to such issues is to compress the captured visual data before transmission takes place. Compressive sensing (CS) has emerged as an efficient sampling mechanism for VSN. CS reduces the total amount of data to be processed such that it recreates the signal by using only fewer sampling values than that of the Nyquist rate. However, there are few open issues related to the reconstruction quality and practical implementation of CS. The current studies of CS are more concentrated on hypothetical characteristics with simulated results, rather than on the understanding the potential issues in the practical implementation of CS and its computational validation. In this paper, a low power, low cost, visual sensor platform is developed using an Arduino Due microcontroller board, XBee transmitter, and uCAM-II camera. Block compressive sensing (BCS) is implemented on the developed platform to validate the characteristics of compressive sensing in a real-world scenario. The reconstruction is performed by using the joint multi-phase decoding (JMD) framework. To the best of our knowledge, no such practical implementation using off the shelf components has yet been conducted for CS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. A Survey of Visual Sensor Networks

2. Wireless sensor network survey

3. Single-pixel imaging via compressive sampling

4. Compressed Sensing MRI

5. Cyclops: Insitu Image Sensing and Interpretation in Wireless Sensor Networks;Rahimi,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3