Block Compressive Sensing Single-View Video Reconstruction Using Joint Decoding Framework for Low Power Real Time Applications

Author:

Ebrahim MansoorORCID,Adil Syed HasanORCID,Raza Kamran,Ali Syed Saad AzharORCID

Abstract

Several real-time visual monitoring applications such as surveillance, mental state monitoring, driver drowsiness and patient care, require equipping high-quality cameras with wireless sensors to form visual sensors and this creates an enormous amount of data that has to be managed and transmitted at the sensor node. Moreover, as the sensor nodes are battery-operated, power utilization is one of the key concerns that must be considered. One solution to this issue is to reduce the amount of data that has to be transmitted using specific compression techniques. The conventional compression standards are based on complex encoders (which require high processing power) and simple decoders and thus are not pertinent for battery-operated applications, i.e., VSN (primitive hardware). In contrast, compressive sensing (CS) a distributive source coding mechanism, has transformed the standard coding mechanism and is based on the idea of a simple encoder (i.e., transmitting fewer data-low processing requirements) and a complex decoder and is considered a better option for VSN applications. In this paper, a CS-based joint decoding (JD) framework using frame prediction (using keyframes) and residual reconstruction for single-view video is proposed. The idea is to exploit the redundancies present in the key and non-key frames to produce side information to refine the non-key frames’ quality. The proposed method consists of two main steps: frame prediction and residual reconstruction. The final reconstruction is performed by adding a residual frame with the predicted frame. The proposed scheme was validated on various arrangements. The association among correlated frames and compression performance is also analyzed. Various arrangements of the frames have been studied to select the one that produces better results. The comprehensive experimental analysis proves that the proposed JD method performs notably better than the independent block compressive sensing scheme at different subrates for various video sequences with low, moderate and high motion contents. Also, the proposed scheme outperforms the conventional CS video reconstruction schemes at lower subrates. Further, the proposed scheme was quantized and compared with conventional video codecs (DISCOVER, H-263, H264) at various bitrates to evaluate its efficiency (rate-distortion, encoding, decoding).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Distributed video coding in wireless sensor networks

2. A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN);Ebrahim;Int. J. Commun. Netw. Inf. Secur. (IJCNIS),2014

3. Compressed sensing

4. Block Compressive Sensing (BCS) Based Low Complexity, Energy Efficient Visual Sensor Platform with Joint Multi-Phase Decoder (JMD)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3