Evaluation of Combustion Stability and Exhaust Emissions of a Stationary Compression Ignition Engine Powered by Diesel/n-Butanol and RME Biodiesel/n-Butanol Blends

Author:

Tutak Wojciech1ORCID,Jamrozik Arkadiusz1ORCID,Grab-Rogaliński Karol1ORCID

Affiliation:

1. Department of Thermal Machinery, Czestochowa University of Technology, 42-201 Czestochowa, Poland

Abstract

In recent years, the interest in renewable fuels has increased mainly due to regulations regulating the permissible limits of toxic components of exhaust gases emitted by reciprocating engines. This paper presents the results of a comparison of the effects of fueling a compression-ignition piston engine with a mixture of diesel fuel and n-butanol, as well as RME (Rapeseed Oil Methyl Esters) biodiesel and n-butanol. The tests were carried out for a constant load and a wide energetic share of fuels in the mixture. The main focus was on the assessment of combustion stability, the uniqueness of the combustion stages, and the assessment of the fuel type influence on the CA50 angle. The tests show that RME offers the possibility of efficient combustion with n-butanol with up to 80% energy share. The share of n-butanol has a positive effect on the engine’s efficiency and very effectively reduces soot emissions. Without the influence on COVIMEP, the share of n-butanol up to 40% in the mixture with diesel fuel and up to 80% in the mixture with RME was recorded. Combustion of RME with n-butanol was more stable. The share of n-butanol in the mixture with diesel fuel caused an increase in NOx emissions, and co-combustion with RME caused a decrease in emissions.

Funder

Ministry of Science and Higher Education of Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference57 articles.

1. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review;Imtenan;Energy Convers. Manag.,2014

2. On the suitable superstructure thermoeconomic optimization of a waste heat recovery system for a Brazilian diesel engine power plant;Morawski;Energy Convers. Manag.,2012

3. Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review;Ghadikolaei;Renew. Sustain. Energy Rev.,2021

4. Bioethanol E85 as a fuel for dual fuel diesel engine;Tutak;Energy Convers. Manag.,2014

5. Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine;Tutak;Int. J. Hydrogen Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3