Learning-Based Hyperspectral Imagery Compression through Generative Neural Networks

Author:

Deng ChuboORCID,Cen Yi,Zhang LifuORCID

Abstract

Hyperspectral images (HSIs), which obtain abundant spectral information for narrow spectral bands (no wider than 10 nm), have greatly improved our ability to qualitatively and quantitatively sense the Earth. Since HSIs are collected by high-resolution instruments over a very large number of wavelengths, the data generated by such sensors is enormous, and the amount of data continues to grow, HSI compression technique will play more crucial role in this trend. The classical method for HSI compression is through compression and reconstruction methods such as three-dimensional wavelet-based techniques or the principle component analysis (PCA) transform. In this paper, we provide an alternative approach for HSI compression via a generative neural network (GNN), which learns the probability distribution of the real data from a random latent code. This is achieved by defining a family of densities and finding the one minimizing the distance between this family and the real data distribution. Then, the well-trained neural network is a representation of the HSI, and the compression ratio is determined by the complexity of the GNN. Moreover, the latent code can be encrypted by embedding a digit with a random distribution, which makes the code confidential. Experimental examples are presented to demonstrate the potential of the GNN to solve image compression problems in the field of HSI. Compared with other algorithms, it has better performance at high compression ratio, and there is still much room left for improvements along with the fast development of deep-learning techniques.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Reduced-Complexity Compression of Hyperspectral Remote Sensing Images Using Deep Learning;Remote Sensing;2023-09-08

2. A Survey on Hyperspectral Remote Sensing Image Compression;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

3. Reduced-Complexity Multirate Remote Sensing Data Compression With Neural Networks;IEEE Geoscience and Remote Sensing Letters;2023

4. Hyperspectral Image Compression via Cross-Channel Contrastive Learning;IEEE Transactions on Geoscience and Remote Sensing;2023

5. Edge-Guided Hyperspectral Image Compression With Interactive Dual Attention;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3