A Scalable Reduced-Complexity Compression of Hyperspectral Remote Sensing Images Using Deep Learning

Author:

Mijares i Verdú Sebastià1ORCID,Ballé Johannes2ORCID,Laparra Valero3ORCID,Bartrina-Rapesta Joan1ORCID,Hernández-Cabronero Miguel1ORCID,Serra-Sagristà Joan1ORCID

Affiliation:

1. Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

2. Google Research, Mountain View, CA 94043, USA

3. Image Processing Laboratory, Universitat de València, 46980 Paterna, Spain

Abstract

Two key hurdles to the adoption of Machine Learning (ML) techniques in hyperspectral data compression are computational complexity and scalability for large numbers of bands. These are due to the limited computing capacity available in remote sensing platforms and the high computational cost of compression algorithms for hyperspectral data, especially when the number of bands is large. To address these issues, a channel clusterisation strategy is proposed, which reduces the computational demands of learned compression methods for real scenarios and is scalable for different sources of data with varying numbers of bands. The proposed method is compatible with an embedded implementation for state-of-the-art on board hardware, a first for a ML hyperspectral data compression method. In terms of coding performance, our proposal surpasses established lossy methods such as JPEG 2000 preceded by a spectral Karhunen-Loève Transform (KLT), in clusters of 3 to 7 bands, achieving a PSNR improvement of, on average, 9 dB for AVIRIS and 3 dB for Hyperion images.

Funder

Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund

Beatriu de Pinós programme

Government of Catalonia

Horizon 2020 Marie Skłodowska-Curie

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Modern trends in hyperspectral image analysis: A review;Khan;IEEE Access,2018

2. (2022, May 01). UCS Satellite Database. Available online: https://www.ucsusa.org/resources/satellite-database.

3. The CCSDS 123.0-B-2 “Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression” Standard: A comprehensive review;Kiely;IEEE Geosci. Remote Sens. Mag.,2021

4. Ballé, J., Laparra, V., and Simoncelli, E. (2017, January 24–26). End-to-End Optimised Image Compression. Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France.

5. Theis, L., Shi, W., Cunningham, A., and Huszár, F. (2017, January 24–26). Lossy Image Compression with Compressive Autoencoders. Proceedings of the International Conference on Learned Representations (ICLR), Toulon, France.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Recurrent-Attentive Neural Network for Onboard Predictive Hyperspectral Image Compression;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3