Batteryless BLE Module with a Piezoelectric Element Mounted on a Shoe Sole

Author:

Dan Shusei1,Yano Yusuke1ORCID,Wang Jianqing1ORCID

Affiliation:

1. Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Abstract

A position identification system for wandering elderly people uses BLE to transmit ID information. The objective of this study is to make the BLE module batteryless using a piezoelectric element. The piezoelectric element is mounted on the sole of a shoe, and when pressure is applied to the piezoelectric element by walking, a voltage is generated between both electrodes of the piezoelectric element. This voltage is used to store the necessary power as a battery to operate the BLE module. In this paper, we provide a step-by-step design approach using piezoelectric elements attached to a shoe to power an actual BLE module. We derive an equivalent circuit for the piezoelectric element under walking conditions and, through circuit simulation and actual measurements, clarify the amount of time required to charge the voltage to drive the BLE, demonstrating the possibility of a batteryless BLE module for use in locating a wanderer while they are walking.

Publisher

MDPI AG

Reference27 articles.

1. Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; A population-based cohort study;Ghanbari;Brain,2020

2. WHO (2024, April 15). Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia.

3. (2002). IEEE Standard for Telecommunications and Information Exchange between Systems—LAN/MAN—Specific Requirements—Part 15: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs). Standard No. IEEE 802.15.1-2002.

4. Wang, J., and Wang, Q. (2012). Body Area Communications, Wiley-IEEE.

5. Monitoring plus-watching system using improved BLE beacon and LPWA communication;Iwata;Meas. Control,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3