Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; a population-based cohort study

Author:

de Wolf Frank12,Ghanbari Mohsen34,Licher Silvan3,McRae-McKee Kevin1,Gras Luuk2,Weverling Gerrit Jan2,Wermeling Paulien2,Sedaghat Sanaz5,Ikram M Kamran36,Waziry Reem7,Koudstaal Wouter28,Klap Jaco2,Kostense Stefan2,Hofman Albert7,Anderson Roy1,Goudsmit Jaap7910,Ikram M Arfan37

Affiliation:

1. Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK

2. World Without Disease Accelerator, Data Science and Prevention Biomarkers, Johnson and Johnson, Leiden, The Netherlands

3. Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands

4. Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

5. Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA

6. Department of Neurology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands

7. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

8. Lucidity Biomedical Consulting, Calle Emir 11, Granada, Spain

9. Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

10. Department of Immunology and infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Abstract

AbstractCSF biomarkers, including total-tau, neurofilament light chain (NfL) and amyloid-β, are increasingly being used to define and stage Alzheimer’s disease. These biomarkers can be measured more quickly and less invasively in plasma and may provide important information for early diagnosis of Alzheimer’s disease. We used stored plasma samples and clinical data obtained from 4444 non-demented participants in the Rotterdam study at baseline (between 2002 and 2005) and during follow-up until January 2016. Plasma concentrations of total-tau, NfL, amyloid-β40 and amyloid-β42 were measured using the Simoa NF-light® and N3PA assays. Associations between biomarker plasma levels and incident all-cause and Alzheimer’s disease dementia during follow-up were assessed using Cox proportional-hazard regression models adjusted for age, sex, education, cardiovascular risk factors and APOE ε4 status. Moreover, biomarker plasma levels and rates of change over time of participants who developed Alzheimer’s disease dementia during follow-up were compared with age and sex-matched dementia-free control subjects. During up to 14 years follow-up, 549 participants developed dementia, including 374 cases with Alzheimer’s disease dementia. A log2 higher baseline amyloid-β42 plasma level was associated with a lower risk of developing all-cause or Alzheimer’s disease dementia, adjusted hazard ratio (HR) 0.61 [95% confidence interval (CI), 0.47–0.78; P < 0.0001] and 0.59 (95% CI, 0.43–0.79; P = 0.0006), respectively. Conversely, a log2 higher baseline plasma NfL level was associated with a higher risk of all-cause dementia [adjusted HR 1.59 (95% CI, 1.38–1.83); P < 0.0001] or Alzheimer’s disease [adjusted HR 1.50 (95% CI, 1.26–1.78); P < 0.0001]. Combining the lowest quartile group of amyloid-β42 with the highest of NfL resulted in a stronger association with all-cause dementia [adjusted HR 9.5 (95% CI, 2.3–40.4); P < 0.002] and with Alzheimer’s disease [adjusted HR 15.7 (95% CI, 2.1–117.4); P < 0.0001], compared to the highest quartile group of amyloid-β42 and lowest of NfL. Total-tau and amyloid-β40 levels were not associated with all-cause or Alzheimer’s disease dementia risk. Trajectory analyses of biomarkers revealed that mean NfL plasma levels increased 3.4 times faster in participants who developed Alzheimer’s disease compared to those who remained dementia-free (P < 0.0001), plasma values for cases diverged from controls 9.6 years before Alzheimer’s disease diagnosis. Amyloid-β42 levels began to decrease in Alzheimer’s disease cases a few years before diagnosis, although the decline did not reach significance compared to dementia-free participants. In conclusion, our study shows that low amyloid-β42 and high NfL plasma levels are each independently and in combination strongly associated with risk of all-cause and Alzheimer’s disease dementia. These data indicate that plasma NfL and amyloid-β42 levels can be used to assess the risk of developing dementia in a non-demented population. Plasma NfL levels, although not specific, may also be useful in monitoring progression of Alzheimer’s disease dementia.

Funder

Janssen Pharmaceutical Companies of Johnson & Johnson

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3