Sequential Data Processing for IMERG Satellite Rainfall Comparison and Improvement Using LSTM and ADAM Optimizer

Author:

Toh Seng Choon1ORCID,Lai Sai Hin1ORCID,Mirzaei Majid2,Soo Eugene Zhen Xiang3ORCID,Teo Fang Yenn4ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA

3. Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia

4. Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia

Abstract

This study introduces a systematic methodology whereby different technologies were utilized to download, pre-process, and interactively compare the rainfall datasets from the Integrated Multi-Satellite Retrievals for Global Precipitation Mission (IMERG) satellite and rain gauges. To efficiently handle the large volume of data, we developed automated shell scripts for downloading IMERG data and storing it, along with rain gauge data, in a relational database system. Hypertext pre-processor (pHp) programs were built to visualize the result for better analysis. In this study, the performance of IMERG estimations over the east coast of Peninsular Malaysia for the duration of 10 years (2011–2020) against rain gauge observation data is evaluated. Moreover, this study aimed to improve the daily IMERG estimations with long short-term memory (LSTM) developed with Python. Findings show that the LSTM with Adaptive Moment Estimation (ADAM) optimizer trained against the mean square error (MSE) loss enhances the accuracy of satellite estimations. At the point-to-pixel scale, the correlation between satellite estimations and ground observations was increased by about 15%. The bias was reduced by 81–118%, MAE was reduced by 18–59%, the root-mean-square error (RMSE) was reduced by 1–66%, and the Kling–Gupta efficiency (KGE) was increased by approximately 200%. The approach developed in this study establishes a comprehensive and scalable data processing and analysis pipeline that can be applied to diverse datasets and regions encountering similar domain-specific challenges.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3