Personalized Point-of-Interest Recommendation Using Improved Graph Convolutional Network in Location-Based Social Network

Author:

Liu Jingtong1,Yi Huawei1,Gao Yixuan1,Jing Rong2ORCID

Affiliation:

1. School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China

2. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

Data sparsity limits the performance of point-of-interest (POI) recommendation models, and the existing works ignore the higher-order collaborative influence of users and POIs and lack in-depth mining of user social influence, resulting in unsatisfactory recommendation results. To address the above issues, this paper proposes a personalized POI recommendation using an improved graph convolutional network (PPR_IGCN) model, which integrates collaborative influence and social influence into POI recommendations. On the one hand, a user-POI interaction graph, a POI-POI graph, and a user–user graph are constructed based on check-in data and social data in a location-based social network (LBSN). The improved graph convolutional network (GCN) is used to mine the higher-order collaborative influence of users and POIs in the three types of relationship graphs and to deeply extract the potential features of users and POIs. On the other hand, the social influence of the user’s higher-order social friends and community neighbors on the user is obtained according to the user’s higher-order social embedding vector learned in the user–user graph. Finally, the captured user and POI’s higher-order collaborative influence and social influence are used to predict user preferences. The experimental results on Foursquare and Yelp datasets indicate that the proposed model PPR_IGCN outperforms other models in terms of precision, recall, and normalized discounted cumulative gain (NDCG), which proves the effectiveness of the model.

Funder

Foundation Research Project of the Educational Department of Liaoning Province

Cooperation Innovation Plan of Yingkou for Enterprise and Doctor

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3